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ABSTRACT 

Exact dipole distributions in closed form are not known 

for any explicitly-defined bodies in uniform translation under a free 

surface.  Exact dipole distributions are known for some special 

families of bodies in uniform translation in an infinite fluid. One 

of these families consists of the lenticular cylinders, which are of 

interest in connection with »hips because they can have any preassigned 

entrance angle.  The exact and linearized dipole distributions generat- 

ing lenticular cylinders in an infinite fluid are compared for various 

values of a fullness parameter. These dipole distributions are 

approximations to the exact dipole distribution generating a (vertical) 

lenticular cylinder in the presence of a free surface. Each of these 

dipole distributions has a wave resistance, the wave resistance of the 

linearized dipole distribution being Michell's wave resistance for the 

lenticular cylinder.  It is found that for practical values of a full- 

ness parameter the two approximate dipole distributions are not very 

close, and for Froude numbers around. .4 the wave resistances may 

differ by as much as 407«.  This difference is larger than the uncertainty 

in the "measured" wave resistance, and it is proposed that experiments 

be conducted to determine the relative merits of the two approximate 

dipole distributions in predicting wave resistance.  If Michell's dipole 

distribution for an arbitrary form is modified in an ad hoc but natural 

way suggested by the results for lenticular cylinders, a comparison 

with existing measured wave resistance can be carried out.  Similar 

remarks apply to the asymptotic behaviour of the wave resistance at 

low speed. 

ii 
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TABLE OF NOMENCLATURE 

Aj cross sectional area of the cylinder 

1/2 L/2 

/   a(x)dx - - £ / 
-1/2 -L/2 

\^     I °Md* "¥   i        °&d* 

a, one half the width of the cylinder in the x-direction 

(see Figure  2) 

C   , wave resistance coefficient w' 
FIF C   ,      wave resistance coefficient of the dipole distribution w  ' r 

which represents the body exactly in an infinite fluid 

(and related to f (x)) 
M C , wave resistance coefficient of Michell's dipole distri- 

bution (and related to g (x)) 

c, cylinder velocity 

£, Froude number = c/ ^gL 

F = 1/f2 

F , coefficient of (l-4x )e in a power series expansion n 

of f (x), see Equation (10) 

V' " " ¥  »EIF« 

G, Green's   function 

G   , coefficient   of   (l-4x  )e     in   a  power  series   expansion  of n 

g (x), see Equation (9) 

g, gravitational acceleration 

9 
g   (x)   =   "  "TT"   aM(x)   =   the  cross   sectional   shape  of  the   lenticular 

cylinder 
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Mx),      a function proportional to a dipole distribution, such 

1/2 

that   (      h(x)dx = 1. 

-1/2 

k, radius of the circle forming the cross section of the 

lenticular cylinder 

L = 2a, see Figure 1. 

m, an integer greater than zero such that mp ^ 1 

p, parameter defining the shape of the cylinder,  see 

Figure 20 
A 

R ,        wave resistance w' 
AFIF RJ  ,      wave resistance of a^T,, w EIF 

R .        wave resistance of aw w M 

r, local radial coordinate,  see Figure 8 

v, fluid velocity 

w, complex velocity potential 

x,y,z,     normalized rectangular coordinates, see Figure 1 and 

Appendix B 

x^z,     unnormalized rectangular coordinates 

m' the x-coordinate of the m  singularity in ji 

Y   , Bessel function of the second kind, order zero 
0 

z ,        the z coordinate of the m  singularity in ^ m' 

local  angular  coordinate,   see Figure  8 

average half-beam of the   shape,   divided by the  length, 

i.e. ,   e =- A/2L2 

1/2 
:f =    /        fe(x)dx 

-1/2 
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1/2 
/  ge(x)dx = -A 
1/2 2L 

= e 

Ch  2l7 

^ = ^ + ln 

T], bipolar coordinate defined by Equations (1) and (2) 

|j. , strength of the m  discrete dipole source 

|, bipolar coordinate defined by Equations (1) and (2) 

?o ■ ¥ 
p, density 

cr, a, dipole distribution; a(x) = a(x) 

aEIp, dipole distribution which is exact in an infinite fluid 

aM, Michell's dipole distribution 
A 

is,   0, velocity potential, see Appendix B 

^ , approximate f)  in the vicinity of the m  discrete dipole m' 

source, 
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1.  INTRODUCTION 

In 1898 J.K. Michell published a paper entitled "The Wave 

Resistance of a Ship", in which he gave a formula for the approximate 

wave resistance of a thin ship1-  .  It was found later''  ' ^  by making 

a formal expansion of the complete nonlinear problem in terms of a 

small thickness parameter such as the beam, that Michell's formula 

correctly predicts the leading term in the wave resistance.  The formal 

expansion procedure can be used to find higher-order approximations to 

the solution of the exact nonlinear problem but the calculations are 

complex and have never to our knowledge been carried out for any ship 

^orm, 

Michell's result is obtained by linearizing the boundary 

conditions on the ship and on the free surface.  If we satisfy one of 

these boundary conditions to a higher order than Michell did we will 

obtain a new approximate solution to the exact nonlinear problem.  This 

new solution will agree with Michell (and hence be exact) to the first 

nonvanishing order in the thickness parameter.  The second terms of 

Michell's solution and the new solution will disagree and both are 

presumably incorrect.  When applied to any particular case one of these 

solutions will be numerically more accurate than the other.  It may be 

that our solution is more accurate, in which case it would be useful. 

We cnnnot prove that it is, but we do show that our solution has 

desirable properties. 

The problem cf satisfying the boundary condition on the ship 

to higher order arises also in problems without free surface.  In fact 

the uniform flow past a lenticular cylinder in an infinite fluid is 

known exact1 >'■  This exact solution and the corresponding linearized 
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1.  INTRODUCTION 

In 1898 J.H. Kichell published a paper entitled "The Wave 

Resistance of a Ship", in which he gave a formula for the approximate 

wave resistance of a thin ship1-  .  It was found later1-  ' L  by making 

a formal expansion of the complete nonlinear problem in terms of a 

small thickness parameter such as the beam, that Michell's formula 

correctly predicts the leading term in the wave resistance.  The formal 

expansion procedure can be used to find higher-order approximations to 

the solution of the exact nonlinear problem but the calculations are 

complex and have never to our knowledge been carried out for any ship 

^orm, 

Michell's resu]t is obtained by linearizing the boundary 

conditions on the ship and on the free surface.  If we satisfy one of 

these boundary conditions to a higher order than Michell did we will 

obtain a new approximate solution to the exact nonlinear problem.  This 

new solution will agree with Michell (and hence be exact) to the first 

nonvanishing order in the thickness parameter.  The second terms of 

Michell's solution and the new solution will disagree and both are 

presumably incorrect.  When applied to any particular case one of these 

solutions will be numetically more accurate than the other.  It may be 

that our solution is more accurate, in which case it would be useful. 

We cannot prove that it is, but we do show that our solution has 

desirable properties. 

The problem of satisfying the boundary condition on the ship 

to higher order arises also in problems without free surface.  In fact 

t^e uniform flow past a lenticular cylinder in an infinite fluid is 

known exactly.  This exact solution and the corresponding linearized 
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solution are  discussed in Section 2, particular attention being paid to 

the exact and linearized dipole distributions generating these flows. 

In Section 3 we use the results of Section 2 to construct a 

new approximate solution to the problem of a vertical lenticular strut 

in a unifurm stream with free surface.  This solution has the following 

properties: 

1) It agrees with Michell and is therefore correct to the 

first nonvanishing order in the thickness parameter 

(for any fixed Froude number), 

2) 1L is correct to the first nonvanishing order as the Froude 

number tends to zero (for any fixed thickness parameter), 

Michell's solution does not have this property. 

3) It is correct to the first nonvanishing order as the depth 

of the observation point goes to infinity (for any fixed 

Froude number and thickness parameter)   Michell's solution 

does not have this property. 

Note that while the new solution has some properties not enjoyed 

by Michell's it is not claimed to be correct to higher order in the thick- 

ness parameter 

In Section 4 we compute a new wave resistance for vertical 

Lenticular struts using the new approximate solution of the flow problem. 

The values of wave resistance obtained by the two methods differ by as 

much as 4(H for realistic values of the thickness parameter and for 

Freude numbers around ,4   This difference is larger than the uncertainty 

in experimentally determined wave resistance, and it is proposed that 
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experiments be carried out to determine the relative merits of the two 

approximations for predicting wave resistance. It is also shown that 

the new approximation leads to a different low-speed asymptotic behaviour 

for the wave resistance. 
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2.  SHAPE vs, DIPOLE DISTRIBUTION FOR A LENTICULAR CYLINDER IN AN INFINITE 

FLUID 

In an infinite fluid the cross-sectional shape g (x) of the 

infinite cylinder gives the linearized dipole* distribution - -j- g (x). 

The fullness parameter e is the average half-beam of the form divided by 

its length. The exact dipole distribution generating this shape is defined 

to be - w— f (x) „  For thin bodies we expect g(_(x)~
yf (x), in accordance 

with linearized theory„  Since the cylinder and the fluid are assumed to 

be infinite, the dipole distribution is independent of the y-coordinate, 

see Figure 1, and we can confine our discussion to the two-dimensional 

problem in the xz-plane, see Figures 2A, 2B. 

Let us introduce the bipolar coordinates ^, T^; 

m    x =  a sinh T) 
v /        cosh r) - cos^ 

A     a sin g 
^ ^    ' ' cosh j] -  cos^ 

The shape of the lenticular cylinder (formed by the intersection 

of two circular cylinders) is given by ^ = ^ = ^ .  The complex potential 

w for such a cylinder moving in the negative x-direction with velocity c 

(or for a stationary cylinder in a uniform stream moving in the positive 

x-direction with velocity c) is given by1 

(3)    w = ica(-- cot £ - cot ^) 

where   '  =   ^ +   ir]       The velocity potential   is 

*    Dipoles  in  an  infinite  fluid,   without   free surface. 
♦"•  Relationship? between ncrmalited and unnormaltzed quantities are given 

in Appendix E 
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2r 
A o sinh —ä 

(4) »5 - ca(| 2--^- jr - |),  2a - L. p      cosh 4? - cos 4*      a 

P P 

The parameter p is related to e by 

(5) e - Tr(2-p) ■<   sin pir „    A 

8 sin    ^ 2L 

where A is the cross sectional area of the cylinder« Figure 3 shows € 

vs. p for 1 ^ P ,£ 2. For a circular cylinder p •» 1 and € - 5 ; for a 

strip p = 2 and e = 0, For p < 1 the shape of the cylinder is shown in 

Figure 2B0 

If 0 j£ p ^ 1 we will call the cylinder a supercircular cylinder, 

and if 1 < p <^ 2 we will call it a subcircular cylinder.  For a subcircular 

cylinder the dipole distribution is confined to the x-axis (or the Xy-plane 

in three dimensions), while for p < 1 there are additional discrete 

dipoles on the z-axis (i.e., lines of dipoles passing through the z-axis 

parallel to the y-axis).  In the rest of this section we discuss only sub- 

circular cylinders, 1 < p ^ 2; supercircular cylinders are discussed in 

Appendix C. 

The function f (x) is related to ^ by e 

<6>    ¥z 
df (x) 

2-0+ 
c —35r- > lx1^7 

Using Eq, (4) and the relationship between normalized and unnormalized 

potentials (see Appendix B) we find 

. i sin ll (i,4x2)2/P 
(7)    f (x) - —^ £ 

G 
 2  

(l+2x)4/P+(l-2x)4/P-2(l-4x )2/Pcos ^ 
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rn.-J   Lhc;   sli.iiie   is   given by 

(8) g  (x)  = ^ (      y/csc2 ^ .  4X
2    + Cot ^) 

For  small   € we can express  f   (x)   and g  (x)   as  a  power series 

in  c, 

(9) gjx)   =   (l-4xZ)     E    Gn(x)€
n 

n=l 

oo 

3     £-    l'n- 

(10) f   (x)  =   (l-4x2)     Z    F   (x)cn 

n=l 

where  from Equations   (5),   (7),   and  (8),   we  find 

Gl --  Fl " 7 

G2  =  0 

F2.i§[1 + ^(1^5)1 

etc 

Thus   if  e ->• 0   (p   *  2)   we  see that   [g   (x)   -   f   (x) ]  -> 0  for 

fixed  x,   since G-,   =  F-, .     The   functions  g   (x)   and  f   (x)   are  shown  in 

Figures   4-7   tor   r  ~   .025,    .05,    .1,   and   .3   .     The  fractional  difference 

of  the  two   functions   is,   for   fixed  x  and   small   e   , 

g€(x)   -   fr(x) 12 ,   2, 

g     (x) TT V1 + 2X/ 

*     The validity  of   such   an  expansion  is   examined  in Appendix A, 
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v.'bicb becomes  infinite  for x - i"   1/2,   no matter bov? small   e may be.     The 

bobav.I.our  o'7 the  functinns  at  x ~  i  1/2  is  also  quite different: 

2 9 2/P   _   . = i (11) f   (x)'v        sin ^  •   (7r5)"/lJ  as   5 = 4 -   x -> 0 
pTT   ' l ^ 

(12) g^x)-   -  i tan ^  •   [TTB]   . 

Tbc difference  is   apparent  in Figures  4-7 
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A NEW APPROXIMATE FREE-SURFACE FLOW PAST A VERTICAX LENTICULAR CYLINDER 

Suppose a lenticular cylinder is placed upright, as shown in 

Figure 1, in a uniform flow with linearized free surface. The dipole 

c 

[1] 

* 
distribution generating the resulting mathematically well-defined flow 

is unfortunately not known.  The approximate flow proposed by Michell 

and others is the one generated by the dipole distribution 

(13)    aM(x) = = ^ ge(x)   for  |xl ^ , y ^ 0 

where 

z(x,y) = t g€(x) 

is the equation of rhe  lenticular cylinder.  That this is the first non- 

vanishing term in an expansion of the exact nonlinear solution in powers 

[21 
of e was assumed by Michell and verified formally by Stoker and Peters'- J 

[3] and Wehausen     We propose the approximate flow generated by the dipole 

distribution 

(14)     aEiF = " "fe fc(x)   for      Ixii7'y^0- 

*     We have  adopted  the  convention v = + grad  ^   ,   so  that 
2 2 2   '   ' G(x,y, z.x', y* , z'')= [(x-x')  +(y-y,)   +(z~z')    ] +  regular  function 

is   the velocity potential   at   x,y,z   of  a unit   sink at  x^y'jz'   in  a uniform 

stream under  a   free  surface,   and  -  -r—r is  the  potential  of  a unit 

x-directed  dipole 

**    Dipoles   satisfying the   linearized   free  surface  condition. 
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To the first nonvanishing term in  € we have 

(15) tfM
s*EIF> 

as we  see  from Eq0   (13),   (14)   and Eq»   (9),   (10)   et  seq.     Also,   aEIF(x) 

is  exact  in  an  infinite  fluid,   as  suggested by the subscript EIF,   in 

the  sense that   asymptotically for large y it  generates the exact  two- 

dimensional  flow past  the  lenticular cylinder.     Asymptotically for large 

y  c-w generates  the linearized two-dimensional  flow past  the  lenticular 

cylinder., 

Finally,   if the Froude number f tends  to zero,   for any fixed 

value of  the thickness parameter  e,   the flow defined by  Orfj-p approaches, 

for  y 2 ^i   t^e  exact  two-dimensional  flow past the lenticular cylinder, 

the positive  images  required  to   satisfy the  limiting boundary condition 

~;\  " 0 being supplied by the free-surface dipole potential 0     Thus the 

new  approximate  solution to  the mathematically well-defined problem of 

a  lenticular   strut   in  a uniform  flow with  linearized  free  surface 

condition  has   advantages net   enjoyed by Michelles  solution  to  the  same 

problem      The  suitability  of  this  model   for  analyzing  full  forms may be 

queiticned,   since  for  finite Froude number  full   forms  are  inconsistent 

with   small  waves       On  the  other hand  the new  solution becomes   exact   for 

Low  Freude numbers       Asymptotics   aside,   the practical value  of the new 

solucion will   oe  determined by  the  accuracy  of   its numerical  predictions 

for  practical   firms   operating  at  practical Froude numbers. 
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^    ^ANEWAP PROXIMATE WAVE RESISTANCE, FOR A yERTIC AL LENTICULAR CYLINDER 

Suppose we have  a dipole distribution  a(x)   on the  region 

|xj   £ L/2,   y   ]> 0       Within  the mathematically well-defined theory of  flows 

ratt^tying the  linearized free  surface condition the wave resistance  of 

[5 ] 
r. hi:   dipoie  al^crioution  is   given  exactly by 

1/2,       1/2 

i^b,' R    =       8Tr2pF2     ( (       a(x)0(xt)Y  (F(x-xM )dx dx« 

-I/I     -1/2 

vhe.r e 

^(x)   =   aCxL), 

P     is  the deniity of  the  fluid , 

r 
c 

?2   -    f  =   1/ 'i/^F- =  Froude number ^ 

i.    L~   rhe  bessel   function   of  the  second kind,   order  zero 

c        Ah if   we   iec    rixf   =   ■   *-        »^       hix». 

-h- r. 

1/2 1/2 
,' ■ _ i        /- 

h(x)   a>;=i     and  A,    =    •   -~ cvx)dx 

i/2 1/2 

we  can   introduce   a wave  resistance  coefficient 

1/2       1/2 

(iM C     =        ^FZ      , h(x)h(xt)Y   (F'x-x" )dx  dx' 

1/2     -1/2 

in   term=   cf   which   the  wave   resistance  becomes 

• i -\       ^       .-. 

18) R =   IJ   pc   L"   ,0 w       2   ^ h   w 
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where 

^h  2l7 

If g (x) defines the shape of a subcircular lenticular cylinder, 

then Micheli's approximate dipole distribution is 

(19) cM(x) = - j^  g^(x)  for |x| <; i , y ^ 0, (see Equation (13)), 

and Micheli's wave resistance IL, for the lenticular cylinder is obtained 

by substituting cM(x) for a(x) in Equation (16).  For comparison we 

propose ehe dipole distribution 

(20) pIF<^) = - -^ fe(x)  for \x| <: ^ , y ^ 0* 

AEIF and the corresponding wave resistance R   obtained by substituting 

FJp(x) for o(x) in Equation (16).  The properties of the dipole distri- 

Dutijn "pjp and the corresponding flow were discussed in Section 3. 
AM     AEIF We now compare R! with R   .  Since the two dipole distributions aM and 

Op-j-p associated with a given lenticular cylinder will have different 

values of A. ( or :, ) , we cannot compare the values of C , but we must 
2 

c jr,|,,.re  values of c C  (see Equation (18)), which is done in 

Figures 8-10 

For  Michell's   dipole  distribution we have 

*     EIF  means   Exact   in   an   Infinite  Fluid 
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Gh '  e
g 

= I      /       Se(x)dx' h(x)  " Li" ge(x)' 
-1/2 s 

while for  cr„T17(x)  we have 

1/?- 

h ""   ''f "  L ',, -     .-4      /       fe(x)dx, h(x)  = ^ fe(X) 
-1/2 ■f 

2rM  „j     2^EIF The  graphs  show e  C     and  e^C vs.   the Froude number  f  for cylinders 01 R w f w 

with p =  1.905,   1.812,   and 1.635.     The  e defined in Equation  (5)   is  e 

and 

(21) e     =   e     _  i  e2+   ... 
Ö f TT   "f 

2 
Since 2L e  is the cross-sectional area of the lenticular cylinder, while 

o o 
2L er is the dipole moment of the distribution OpT„, the relation 

= e^ - — e^+--• indicates that for small e  the dipole moment exceeds 
S     f   TT  f g 

the volume.  This is also true for a circular cylinder [e =Tr/8, €^=:Tr/4]„ 
r  i 

Tliosc results are examples of a theorem of Landweber and Yih   , which 

states that added mass + buoyancy = —^ (dipole moment]; since the 

buoyancy is the density times the volume, and the added mass is positive, 

the dipole moment always exceeds the volume.  It follows that the 

volumetric portion of the discrepancy, contained in e^ and e , is always 

in the same direction,  Michell's theory tends to underestimate the wave 

resistance because it underestimates the volume.  Over most of the Froude 

number range in Figures 8-10 the portion of tbe discrepancy contained in 

the C 's is n ,uc same direction. w 

Figures 8-10 reveal a considerable difference in the values of 

wave resistance computed by the two methods.  This difference is discussed 
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further below.  We close this section by remarking that R   has the 

follcv/ing property V7hich follows from statements made in Section 3:  To 

the first nonvanishing term in 6 we have, for fixed Froude number, 

(22) %    - ^ . 

and both are correct to this order.  For fixed e we would like to conclude 

that to the first nonvanishing term in the Froude number f, as f •♦ 0, 
A eye0 •* w 
R        is  correct while  R is not,   since  crEIp  and  0M have the  analogous 

properties„     We have not been able to supply a derivation,   since certain 

apparently necessary information about the manner in which  OgT„ becomes 

exact,   as  f -* 0,   is not known to us„     However,  we can compare the 

asymptotic   expansions   of R    and  K .       as  f  * 0,   namely 

~r,\ nM       1       2T
2       2       8f4       4^2  PTT (23) Rw^7 pc L       €g   .  -_-      ^ tan    *f 

9                    8/P r(l4. -^ 
#0/v         ^EIF       1       2T~ 2 8f ./-- U1+ p;       ,   2  2^ 
(2^)         R       A/ 7 pc  L    • ef -- ° Vrr    —T^V" sin    IT 

2 f TT r(| + |)            P 

These  asymptotic   expansions   are  found by methods  used  in and described 

also  in .     We can see that  Equations(23)   and  (24)   are different,   but 

decreastngly  so  as   € -»• 0   (p ->>  2) ,     In  fact   if we   let  p =  2   (l-T)),   r) -♦ 0, 

and  expand,   Equations(23)   and   (24)   both  yield 

,9,x 1       2.2       TT
2
     2       8f4       4   .     v2 

(25) -j pc L     •  "^ Tl     '  -^~      3   (TTTI) 

There is nothing to be gained by comparing Equations (23) and (24) since 

both are inadequate for practical Froude numbers.  However, one can find the 

oscillatory terms which come next in the asymptotic expansions, at which 

point a comparison will provide valuable information. 
TECHNICAL RESEARCH GROUP 
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5.  CONCLUSIONS 

Figures 4, 5, 6, and 7 compare f€= - -^ aEIF and g€» " "^ aM 

for a lenticular cylinder. Figures 4 and 5 are the most important from 

a practical point of view since practical values of e (based on waterplane 
it 

section) are in the range .025-.050 . The discrepancy in this range can 

be characterized as follows: 

a) In the central 80% of the form f (x) is larger than g (x), 

the discrepancy being maximum at the center.  The integrals 

are related as in Equation (21). 

b) Near the ends f (x) vanishes to a different order than 

g (x), as shown in Equations (11) and (12). 

Figures 3,  9, and 10 compare the wave resistance of aFTF(x) and 

aM(x).  Figures 8 and 9 are the must interesting from a practical point 

of view„  The numbers were computed using a digital computer program 

whose accuracy decreases with Froude number, and for that reason no 

results are presented for f < .3 .  The discrepancy in wave resistance is 

not small compared to typical discrepancies between calculated and measured 

wave resistance, and is large compared to the uncertainty in measured wave 

resistance.  The discrepancy appears to change sign as a function of 

Froude number.  It would be interesting to test lenticular ship models and 

compare measured wave resistance with the wave resistances of (^(x) and 

aFTp(x)    It would be significant and useful if a consistently better 

agreement were found using OpTF(x). 

* Typical values of c are .04 for a destroyer, .048 for a tanker, based 

on the waterplane section. 

** All modified for finite draft. 
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The results derived above for a special class of forms can be 

used to construct new dipole distributions for general forms having a 

finite entrance angle.  This can be done at each depth in an ad hoc 

fashion by multiplying Michell's dipole distribution by f , K(x)/g , v(x), 

where e(y) defines the lenticular cylinder having the same entrance angle 

as the given form at the depth y.  This modification, if applied to forms 

for which model resistance data are already available, would make possible 

the evaluation of a potential improvement in wave resistance calculation 

procedures without performing additional model tests, 

aM and O-p-r-p  predict different asymptotic behaviour of the wave 

resistance at low speed.  It would be interesting to conduct model tests 

on lenticular struts to evaluate the relative merits of the two theories. 

However, if we assume that the behaviour of the dipole density at bow 

and stem at the surface is the same, for an arbitrary form, as for a 

lenticular cylinder having the same included angle, then the low-speed 

asymptotic behaviour, which depends only on certain derivatives evaluated 

at the bow and stem at the surface ([3j, [7]), is easily derived in 

either theory, allowing comparison of the theories with existing 

experimental results. 

Incidentally, it can be seen that a_TT, cannot be used indis- y ' EIF 

criminately since it predicts infinite wave resistance for a vertical 

circular cylinder.  The theoretical implications of this divergence 

arc being studied.  The possibilities of practical application of both 

o., and öp-j-p are presumably limited to bodies which more nearly resemble 

a ship than a verticle circular cylinder does. 
1 
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APPENDIX A 

CONVERGENCE OF THE SERIES FOR g€(x) and fe(x) AS FUNCTIONS OF € 

If we let p = 2-s, then from Equation (5) 

sir - sin STT (A-l) 
8 sin2 3f 

/ \2 
ITS r-j  ,  tTTSJ   i  0 „  1 

For thin cylinders, when 2 j> p > 1, we have 0 ^ s < 1, and 

0 ^ e < TT/S. 

Let us now regard s as a complex variable.  The function 

esc 5p has simple poles at s = 0, "i" 2, + A, • • -, but at s = 0 we have 

v = 0; thus e is an analytic function of s for Is ) < 1, the region we 

are interested in 

Now consider g (x), 

(A-2)    g.(x) = Y < / cot2 ^ + 1 - 4x2 - cot ^) 

The function cot ^r  has simple poles at s = 0, "t 2, •••, but 
•     w m 

cot ^ + 1 - 4x 
7   ^^n ) 

has a branch point when s = s , where cot —*— = - (l-4x ), or 

s     =   1 t  2n + ^   ■ f 

O TT 
=   1 t  2n + - Arctan   (i   \J  l-4x2  ),   n - 0,   1,   2,   ••• 

Thus     |s  12  1,   and  g„(x)   is   an  analytic   function  of  s   for 

|s|<  1 
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l+2x New consider f (x) 0  Let R = v' T  . then cv ^ l-2x ' 

1       c-in    2^ TTS"  S:Ln TT? 
(A 3) f.(x) = -£S £-S—^-^ 

ccsh   LJTT In R]-cos w™ 

The  denominator  of Eq„   (A-3)   becomes  zero when  s =   s-, ,   and 

Tr(l * 2n)   ^  1  in R 
s    = ^__— n = 0,   1,   2,   •« • 

1 mr '      '      ' 

Thus     | s, j   N 1,   and  f  (x)   is  an  analytic   function of s  for 

Is! < I, 

Therefore, both g (x) and f (x) can be expressed as a convergent 

p„wer series in s for 0 _^ s < 1. 

For s - 0, : -* 0, s and .: are linearly related (see Equation (A-l)), 

and hence if a convergent power series expansion exists in powers of s, such 

an expansion also exists in power- cf c. 
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APPENDIX B 

RELATTOMS BETWEEN NORMALIZED AND UNNORMALIZED QUANTITIES 

A A 

Let  g^Cx)   define  a lenticular cylinder of  length L via 

z = T gG(x), 

A A A 
where  cL is  average half-beam.     If we  let  z =  zL,   y =  yL,   x = xL and 

define  g  (x)   = L    g   (xL)   we  find 

z = t  gc(x) 

as the normalized form of the lenticular cylinder.  If 

A.   .A  A A 
p_(x,z) + CX 

is the total potential describing a uniform flow past a lenticular 
A 

cylinder in unnormalized coordinates, and if we let ^ (xL, zL) = ^ (x,z) 

we find that the total normalized potential is 

^.(x,z) + cLx, 

The   linearized relation 

A      * A      A 

d^r(x,o -t) dg   (x) 
       .   fc       =      T"      n ■ * 

hcc omes 

^.(x,o+) dge(x) 

5z ~ 3x 

in normalized coordinates   Since the dipole density is 
A 

A . 

I      /X   ä^  (x,o  )      A 

^V     > 
■^  dx we have  the   following  linearized  relations 
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c A A 

Unnormalized dipole density " - y- g (x) 

Normalized dipole density = - y- g (x) . 

For completeness we note that the free surface condition in 

normalized coordinates is 

^| = F M , (y . o) 
öx öy 

where F = ^n- 
c" 
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APPENDIX C. 

SUPERCIRCULAR CYLINDERS, 0 ^ p ^ 1 

Consider the velocity potential ^ as given by Equation (4): 
A 

^ becomes  infinite whenever TI = 0  and ^ = nipir,  wliere m =  1,   2,   3,   •• -   . 

Since  in the  region  of  interest,   z ^ 0,   we must  have 0  <^ ^ ^ TT,   the 

restriction  on ra is 

(C-l) mp ^ 1   , 

Therefore, for p>l (subcircular cylinders) no m satisfies Equation (C-l). 

For supercircular cylinders, p = p <1 1, there are m singularities in $, 

where m is the largest integer satisfying the equation m ^ ^/P0° 

The rectangular coordinates corresponding to t] = 0 and 

^ = mpT are 
A 

(C-2) 

x = 0 m 

A    _   a sm mp-rr 
zm       1-cos mp-rr 

Note that   the  point   (0,z  )   for m ^  1  is   inside  the  cylinder because 

e = mpTr > e0 
= -^ . 

Let  us  define  local  polar coordinates  r,   a with  origin  at 

(0,   z  ),   see Figure  11.     As  r] •>  0  and  ^ -> mp-jr Equation   (4)   can be written 

as 

(C-3) ^ -  2ca -j 3  
T] +(mp7r-0 

which   in  terms   of r  and  a  for  r  «  1 becomes 
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(C-4) ^ * ^ ^ 

where 

v       ^ ^m       1-cos mpTT 
2ca 

Equation  (C-4)   is  the potential due to  a line dipole  source. 
2 

Fcr p = 1 (circular cylinder) m = 1 and p,, ■ ca , zi ^ ^> which just 

expresses the well known fact that a circular cylinder of radius a can be 

generated in a uniform flow with velocity c by a dipole distribution of 
2 

strength p.-, = ca on the axis of the cylinder. 

Thus for p < 1 in addition to any dipole density - 7— f (x) 

on the x-axis we also have discrete dipole sources of strength \x    at 

(0, z ),  As p decreases, z  for a given m increases, and so does u. ; 

also new discrete dipoles are created at the origin as p decreases 

(whenever p = — for some m), which then split and move away from the 

origin in the negative and positive z-directions as p decreases further. 

So far we have kept the length 2a constant, which means that 

the circles forming the cross section increase as p -♦ 0.  Now let us 

keep the radius k of the circles constant, in which case 2a decreases 

as p -^ 0, 

(C-6)    a = k sin -^ 

Equations   (C-2)   and   (C-5)   become 

sin **r  sin mp-rr 
(C-7) z     =  k m 1-cos mp-rr 

2 
7 sin/ «n 

(C-8) ii     -   2ck    T ~  v       ' nn 1-cos mp-rr 
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If we now let p -> 0 while k remains constant,   the circles 

become tangent  at  the origin,   and there is  an infinite number of discrete 

dipoles  on the z-axis  at 

(C-9) z    - ^ . m =  1,   2,   3,   ••• ' mm- >      »      J 

of  strength 

ck2 

(C-10) ^ = ^7 
m 

Note that  z    never exceeds k,   and the strength of the dipoles m JO» 

near the origin approaches zerc 
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